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CHAPTER 27

Manipulation-Resistant
Reputation Systems

Eric Friedman, Paul Resnick, and Rahul Sami

Abstract

This chapter is an overview of the design and analysis of reputation systems for strategic users.
We consider three specific strategic threats to reputation systems: the possibility of users with poor
reputations starting afresh (whitewashing); lack of effort or honesty in providing feedback; and
sybil attacks, in which users create phantom feedback from fake identities to manipulate their own
reputation. In each case, we present a simple analytical model that captures the essence of the strategy,
and describe approaches to solving the strategic problem in the context of this model. We conclude
with a discussion of open questions in this research area.

27.1 Introduction: Why Are Reputation Systems Important?

One of the major benefits of the Internet is that it enables potentially beneficial in-
teractions, both commercial and noncommercial, between people, organizations, or
computers that do not share any other common context. The actual value of an interac-
tion, however, depends heavily on the ability and reliability of the entities involved. For
example, an online shopper may obtain better or lower-cost items from remote traders,
but she may also be defrauded by a low-quality product for which redress (legal or
otherwise) is difficult.

If each entity’s history of previous interactions is made visible to potential new
interaction partners, several benefits ensue. First, a history may reveal information
about an entity’s ability, allowing others to make choices about whether to interact
with that entity, and on what terms. Second, an expectation that current performance
will be visible in the future may deter moral hazard in the present, that hazard being
the temptation to cheat or exert low effort. In other words, visible histories create an
incentive to reliably perform up to the entity’s ability. Finally, because histories reveal
information about abilities, entities with higher abilities will be drawn to participate,
as they will be distinguishable from those of lower abilities, and respected or rewarded
appropriately. In other words, visible histories avoid problems of adverse selection.
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Figure 27.1. Example illustrating reputation system dynamics.

A reputation system collects, maintains, and disseminates reputations—aggregated
records from past interactions—of each participant in a community. The rapid advance
in computational power and communication capacity on the Internet has been a double-
edged sword: On one hand, it has enabled the construction of reputation systems that
can store, gather, and process large quantities of information. On the other hand, it
has allowed more sophisticated attacks on the integrity of the reputation system to be
mounted.

Reputation systems have been designed for use in many settings, including online
auctions, e-storefronts, and a wide-range peer-to-peer systems. These systems naturally
have differing interfaces, and track different aspects of user behavior. However, they
all share certain underlying components, which are illustrated in Figure 27.1.

The core of a reputation system involves collecting records of entity A’s past be-
havior, and then disseminating reputation information to others who may potentially
interact with A in the future. (We use the term “entity” to denote the real-world entity
to which we seek to attach a reputation; typically, this is an individual person, but it
could also be an organized group or a firm, or a node in a computer network.) The
records are based on both objective information independently collected about inter-
actions and feedback from the entities about each other. The exact nature of both the
objective information and the subjective feedback depends on the application. For an
online auction, the system may record the agreed sale price and ask the buyer and seller
to report their satisfaction with each other’s integrity and performance after a trade. In
a peer-to-peer system, we might ask each peer to monitor and report how often another
peer makes its system available.

In principle, user A’s reputation could simply be a concatenation of all records
pertaining to A, but in practice, reputations are usually numerical summary values that
permit direct comparison between users. Thus, reputation systems include an internal
aggregation procedure to convert the reports to reputations. If all reports conform to a
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common structure, there are two natural dimensions along which to aggregate reports:
(1) Aggregating across users by computing a statistic of all other users’ reports about
A. (2) Aggregation across time by computing a statistic of all past reports. In addition,
the aggregation function may use other structure derived from the reports, or from
the reputations themselves. In particular, it often relies on some notion of transitivity
of trust, in the sense that reports from users with high reputation are weighted more
heavily than reports from users with low reputation.

Economists have studied models where entities strategically choose actions with an
eye toward the histories they will generate. In these models, the link between actions
and outcomes is probabilistic (bad actions sometimes lead to good outcomes and vice
versa) or outcomes are observed with some error. The analysis of these models is
interesting and complex, but beyond the scope of this chapter.

Rather than threats to the informativeness of a user history, we focus our attention on
threats to the reputation system itself, the system that collects histories and associates
them with entities. When the histories include subjective feedback, that feedback may
not be reported or may not be reported honestly. Histories may even include phantom
feedback from nonexistent interactions.

A second vulnerability comes from the fact that histories may not be tied directly
to entities, but rather to online pseudonyms. In many systems, pseudonyms are cheap,
which lead to two threats: an entity may jettison its pseudonym if it accumulates a bad
reputation, and an entity may acquire many pseudonyms and have them rate each other
favorably in order to inflate their reputations.

To summarize, we consider three threats to the integrity of reputation systems:

(i) Whitewashing. An entity may acquire a new pseudonym and start over with a clear
reputation.

(ii) Incorrectly reported feedback. Entities may not report feedback or may not report it
honestly.

(iii) Phantom feedback. An entity may provide feedback for interactions that never took
place, perhaps using “sock puppet” identities (or sybils) created for the sole purpose
of providing such phantom feedback.

We begin in Section 27.2 with a stylized model of interactions over time in a market.
Initially, in Section 27.3, we assume that the available objective data about interactions
are sufficient to generate informative histories, even without any reporting of subjective
feedback. We consider the threat of whitewashing, where an entity can start over with
a new pseudonym, which will not be linked to the history of actions taken under the
previous pseudonym. Reputations can still create an incentive for good behavior, but
only if a pseudonym with no history is forced to “pay its dues” in some fashion while
it builds up a history of good actions.

Section 27.4 relaxes the assumption of objective data about actions. Feedback about
interactions may not be reported correctly. Entities may not report feedback or may
not report it honestly, for a variety of reasons, including fear of retaliation, or a desire
to be viewed as a nice or skilled evaluator.

One approach is to treat the reporting of feedback about an action as itself an
action in some other domain. A history of feedback reports made by an entity can be
generated and, suitably aggregated, becomes an entity’s reputation as a rater. Just as
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in any reputation system, rater reputations can deter moral hazard, creating incentives
for effort and honest reporting. It may, however, be difficult to assess the quality of
subjectively reported feedback. We present a mechanism that does so by comparing it
with other subjectively reported feedback.

Section 27.5 takes a second approach. Rather than directly assessing the quality of
subjectively provided feedback, it assumes that an entity’s reputation as a rater is the
same as its reputation as an actor in the original domain. This leads to a notion of
transitive trust: if an entity’s actions in the original domain lead it to have a positive
reputation, the entity is presumed to be a good rater as well, and its ratings are treated
as more credible and weighted more highly in computing the reputations of other
entities. For example, positive feedback from an eBay member with a good reputation
would count more than positive feedback from a member with a bad reputation. This
naturally leads to a graph model that represents entities and their feedback about other
entities, with actions in the original domain not represented explicitly. Reputations are
computed as scores for nodes in the graph, subject to the constraints imposed by the
link structure of feedback among entities. We present both possibility and impossibility
results on how transitive trust algorithms can handle the threats of incorrectly reported
feedback and the problem of phantom feedback from sock puppet entities, the so-called
sybil attack.

27.2 The Effect of Reputations

Economists have developed many game-theoretic models of the impact of reputations.
In this section we present some of the fundamental ideas and technical tools necessary.
We begin with an (over)simplified example.

Consider the “prisoners’ dilemma,” a classic model from the early days of game
theory. There are two agents, Alice (A) and Bob (B), who interact. If both agents
cooperate (C) then each gains 1 unit of utility, while if they both defect they gain
0; however if one cooperates and the other defects (D), the defector gains 2 and the
cooperator loses 1. We summarize this as πA(C, C) = 1, πA(D, D) = 0, πA(D, C) =
2, and πA(C, D) = −1. πB is similarly defined via symmetry.

Clearly the outcome of this game, when played a single time, should be (D, D) since
it is a dominant strategy for both agents. In an infinitely repeated game, however, a
player may choose C and accept lower payoffs in one round to increase the probability
that partners will play C against her in future stage games, and thus increase her future
payoffs. We denote the game played in each round as the stage game for that round.

Define the discounted payoff to player i in stage game t to be πt
i δ

t , where πt

is the actual payoff in round t and 0 ≤ δ < 1 is the discount factor. The idea of a
discount factor is that it is somehow preferable to get a payoff in the current round
rather than in the next round. If the payoffs are monetary, the possibility of investing
the payoff at some interest rate provides a good intuition for why a discount factor is
needed.

We will analyze strategy alternatives that consist of decision rules about which action
to play in each stage game, contingent on a player’s own history and the histories of
all other players. The discounted average payoff of a strategy, played infinitely into the
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future, is defined as

πi = (1 − δ)
∞∑

t=0

δtπ t
i .

In this infinitely repeated model, consider the Grim strategy: play C unless any player
has played D in a previous round. This strategy, pursued by both players, denoted
(Grim, Grim), is a Subgame Perfect Nash Equilibrium (SPNE), meaning that, if all
players pursue this strategy, there is no stage game at which any player would want to
deviate from the strategy.

To prove this is a SPNE, we only need to consider “single deviations” in which an
agent only deviates from Grim once and then returns to playing it. This follows from
a generalization of the single deviation property in dynamic programming.

Consider a deviation in which Alice plays D in a round 0. Clearly this will lead
to (D,D) in all future rounds for Alice (for everyone, in fact), so Alice’s discounted
average payoff will be (1 − δ)(2 + δ ∗ 0 + δ2 ∗ 0 + · · · ) = 2(1 − δ); however, if she
did not deviate, then her payoff would be 1 in every period leading to (1 − δ)(1 + δ +
δ2 + · · · ) = 1. Thus, deviating is not advantageous when 1 ≥ 2(1 − δ) or, equivalently,
δ ≥ 1/2. Now, this same argument applies to any period t > 0 with both sides of the
equations multiplied by δt .

Thus, when δ is small, the promise of future payoffs is not sufficient to constrain the
player’s current behavior. This is true in all reputation systems: if the players do not
value future payoffs sufficiently, then reputations are of no value.

Other strategies that are “less grim” can also work. For example, punishing for only
a small number of periods can lead to a cooperative equilibrium for higher values of δ.

Now consider a group of N + 1 players with N odd, in which in each round players
are paired up at random and play the prisoners’ dilemma. In a simple reputational
extension of the above analysis we consider reputational-grim, defined as follows: each
agent begins with a “good” reputation and keeps it if she plays C against players with
good reputations and D against those with bad ones. This reputational-grim strategy, if
played by all players, is also an SPNE, for δ ≥ 1/2. This is because, from an defector’s
perspective, the punishments are the same as in the full Grim strategy.

To understand the value of shared reputations, consider an alternative system where
a player remembers others’ interactions with her but histories are not publicly shared.
A natural strategy is to play personalized-Grim, the variant of Grim where a player
views the game as being separated into N unrelated games, one with each opponent. In
this case, the expected number of rounds between meeting the same opponent is N so
a straightforward calculation (see exercises) yields a condition for this to be an SPNE,
δ ≥ 1 − 1/2N , which is unreasonably close to 1, for large N .

The analysis above applies to situations in which all players have the same ability, but
reputations lead them to strategies where they are reliable partners. To operationalize
varying player abilities, models allow different players different action sets to choose
from in the stage game. For example, a low-ability player might only have action D
available (or perhaps in some percentage of stage games have only action D available).
A high-ability, honest type might only have action C available. Alternatively, it might
take more effort (cost more) for a low type to play C than for the high type. This could
arise where C indicates the completion of a high-quality product. (Player types with
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only one possible action are called “commitment” types in the economics literature.)
Players with both types of action available (called “strategic” types in the economics
literature) would then want to choose actions that distinguish them from low-ability
players and mimic those of high-ability players.

It is also natural to extend the model to situations in which outcomes are only prob-
abilistically linked to actions, or outcomes are reported with random error. This leads
to interesting strategic opportunities, including playing C most of the time but some-
times choosing D, which would not be immediately distinguishable from the actions of
high-ability honest types who also have bad outcomes only less frequently. The anal-
ysis of these models is interesting and complex, but beyond the scope of this chapter.
(However, in the following section we will consider random outcomes in a limited way.)

27.3 Whitewashing

One key issue in online reputation systems is the fragility of identity. Agents with bad
reputations simply reregister with a new username. This is known as whitewashing. It
is easy to see that the ability to whitewash will disable the functioning of the reputation
systems as described in Section 27.2, as agents will simply choose D and then return
with a new identity in the following round.

To prevent this, there needs to be some “initiation fee” upon entry. For example,
simply having an upfront cost of f to register will prevent whitewashing as long as
the cost is sufficiently high. To compute this f note that the total discounted payoff
for deviating once is π ′ = (1 − δ)(2 − f + δ(1 − f ) + δ2 + δ3 · · · ) while following
reputational grim obtains π = (1 − δ)(1 − f + δ + δ2 + · · · ). Thus for an SPNE we
need π ≥ π ′, which implies that δf ≥ 1 or f ≥ 1/δ. (Note that we continue to require
that δ ≥ 1/2 to prevent deviation without whitewashing.)

Unfortunately collecting fees is not always feasible (or politically viable); however,
we can create an explicit reputational fee. The key idea is to force the new arrivals to
“pay dues” upon arrival. The most efficient way to do this is to allow veterans to defect
against newcomers, where newcomers are playing for the first time (apparently) and
veterans have played at least once before. Thus, we can define the pay-your-dues (PYD)
strategy as: play C against any veteran who has never deviated from PYD, otherwise
play D against the veteran. Play D against a newcomer, unless you are a newcomer too,
in which case play C.

Intuitively, this leads to the “socially most efficient” SPNE, where social efficiency
measures the sums of all players’ payoffs. Note, however, that the social efficiency
in this equilibrium is less than the maximum social efficiency that could be attained
without whitewashing. This follows because the maximum social welfare in a single
pair playing the PD is 2 while choosing (D, C) yields a value of 2 − 1 = 1. (One might
consider requiring that newcomers play D against other newcomers, but this obtains a
value of 0 and entails further social loss.) Thus, the possibility of whitewashing leads
to an unavoidable cost being imposed on society.

Even allowing for whitewashing, PYD leads to an SPNE where every player’s
average discounted payoff is 1. (You should verify this as in the exercises.) However, we
have left out several important details in this model that we discuss in the next section!
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27.3.1 A More Dynamic Model

Stepping back, we see that the model we just analyzed has a flaw, since any newcomers
in our model are clearly whitewashers. Thus, for that model, always playing D against
an agent who arrived after the first period (and personalized-grim otherwise) yields a
fully socially efficient SPNE, since (C, C) is played in every interaction.

Thus, it makes sense to extend our model to capture these issues; although the
difficulty is retaining tractability. First, we assume αN real newcomers arrive every
period and an equal number of veterans depart, where the departing veterans are chosen
at random. However, once again this allows us to easily detect whitewashers—if there
are more than αN newcomers in any period then the players know that there must be
at least one whitewasher. Thus, there is an equilibrium in which players play PYD as
long as there are exactly αN newcomers in any period and play D-always if there are
ever more. However, it is clear that this equilibrium is extremely fragile, since a single
deviation leads to all players defecting forever. Such fragile equilibria are artifacts of
the “noiselessness” of the game and the perfect rationality assumptions inherent in
game theory.

To make our model more robust, we add some “noise.” We assume that in any play
of the stage game a player accidently plays D with probability ε > 0 and then returns
in the following period as a whitewasher. In this model, one can show that PYD leads
to the most efficient equilibrium (i.e., the highest fraction of cooperative outcomes
(C, C)). Proving that PYD is an equilibrium is intuitively similar to above proofs with
the addition of some ideas from dynamic programming, while proving optimality is
more difficult and requires a careful stochastic analysis.

The PYD strategy in this stylized model corresponds in more practical settings to
a mistrust of newcomers. Until they have proven themselves, veterans do not trust the
newcomers sufficiently to allow them to undertake mutually beneficial interactions.
If only the veterans could trust the newcomers, the newcomers could start right
away to interact in beneficial ways with the veterans. The threat of whitewashing,
however, forces a mistrust of newcomers. Because of the threat of whitewashing, in
any equilibrium, newcomers must also be penalized at least the amount that a deviator
would be penalized.

The only way to improve the treatment of newcomers in an equilibrium with sig-
nificant cooperation is to make whitewashing difficult, by making it more difficult or
expensive for existing participants to get new pseudonyms than it is for newcomers.
For example, the organization running the reputation system might require entities to
reveal their true names, offer them one free pseudonym, and then restrict the acquisition
of addition ones or require a payment for them.

27.4 Eliciting Effort and Honest Feedback

The previous section described models in which feedback was reported automatically
and objectively. Any system that actually solicits individual opinions must overcome
two challenges. The first is underprovision. Forming and reporting an opinion requires
time and effort, yet the information benefits others. The second challenge is honesty. A
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desire to be nice, or fear of retaliation, may cause a rater to withhold negative feedback.
Conflicts of interest or a desire to improve others’ perception of them may lead raters
to report distorted versions of their true opinions.

An explicit reward system for honest rating and effort may help overcome these
challenges. When objective information will be publicly revealed at a future time, indi-
viduals’ reports can be compared to that objective information. For example, weather
forecasts and sports betting odds can be compared to what actually occurs. See Chapter
26 on information markets for algorithms that create incentives for honest revelation
of information in such settings.

Here, we develop methods to elicit feedback effectively when independent, objective
outcomes are not available. Examples include situations where no objective outcome
exists (e.g., evaluations of a product’s “quality”), and where the relevant information
is objective but not public (e.g., a product’s breakdown frequency, which is available
to others only if the product’s current owners reveal it).

In these situations, one solution is to compare raters’ reports to their peers’ reports
and reward agreement.1 However, if rewards are made part of the process, dangers
arise. If a particular outcome is highly likely, such as a positive experience with a seller
at eBay who has a stellar feedback history, then a rater who has a bad experience will
still believe that the next rater is likely to have a good experience. If she were to be
rewarded simply for agreeing with her peers, she will not report her bad experience.
This phenomenon is akin to the problems of herding or information cascades.

We now describe a formal mechanism, the peer-prediction method, to implement
the process of comparing with peers. The scheme uses one rater’s report to update
a probability distribution for the report of someone else, whom we refer to as the
reference rater. The first rater is then scored not on agreement between the ratings, but
on a comparison between the probabilities assigned to the reference rater’s possible
ratings and the reference rater’s actual rating. Raters need not perform any complex
computations: so long as a rater trusts that the system will update appropriately, she
will prefer to report honestly.

Scores can be turned into monetary incentives, either as direct payments or as
discounts on future merchandise purchases. In many online systems, however, raters
seem to be quite motivated by prestige or privileges within the system. For example,
at Slashdot.org, users accumulate “karma” points for various actions and higher karma
entitles users to rate others’ postings and to have their own postings begin with higher
ratings; at ePinions.com, reviewers gain status and have their reviews highlighted
if they accumulate points. Similarly, offline point systems that do not provide any
tangible reward seem to motivate chess and bridge players to compete harder and more
frequently.

1 Subjective evaluations of ratings could be elicited directly instead of relying on correlations between ratings. For
example, the news and commentary site Slashdot.org allows meta-moderators to rate the ratings of comments
given by regular moderators. Meta-evaluation incurs an obvious inefficiency, since the effort to rate evaluations
could presumably be put to better use in rating comments or other products that are a site’s primary product of
interest. Moreover, meta-evaluation merely pushes the problem of motivating effort and honest reporting up one
level, to ratings of evaluations. Thus, scoring evaluations in comparison to other evaluations may be preferable
in certain settings.
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27.4.1 A Model

We now consider a model to analyze these issues. A number of raters experience a
product and then rate its quality. The product’s quality does not vary, but is observed with
some idiosyncratic error. After experiencing the product, each rater sends a message
to a common processing facility called the center. The center makes transfers to each
rater, awarding or taking away points based on the raters’ messages. The center has no
independent information, so its scoring decisions can depend only on the information
provided by other raters. As noted above, points may be convertible to money, discounts
or privileges within the system, or merely to prestige. We assume that raters’ utilities
are linear in points. We also assume that raters are risk neutral, and hence, seek to
maximize expected wealth.

We refer to a product’s quality as its type. Assume the number of product types
is finite, and the types are indexed by t = 1, . . . , T . Furthermore, we assume that
there is a commonly known prior probability. Let Pr0(t) be the commonly held prior
probability assigned to the product’s being type t . Assume that Pr0(t) > 0 for all t and∑T

t=1 Pr0(t) = 1.
Let I be the set of raters, where |I | ≥ 3. I may be (countably) infinite. Each rater has

a perception of a product’s type, which is called her signal. Each rater privately observes
her own signal; she does not know any other rater’s signal. Let S = {s1, . . . , sM} be
the set of possible signals, and let Si denote the random signal received by rater
i. Conditional on the product’s type, raters’ signals are independent and identically
distributed; the distribution is represented by function f (sm|t) = Pr(Si = sm|t), where
f (sm|t) > 0 for all sm and t , and

∑M
m=1 f (sm|t) = 1 for all t . We assume that this

function f (sm|t) is common knowledge. Furthermore, we assume that the conditional
distribution of signals is different for different values of t , so that the signals are
informative about the types.

Throughout this section, we use the following simple example as an illustration.
There are only two product types, H and L, with prior Pr0(H ) = Pr0(L) = 0.5, and two
possible signals, h and l. The distribution of the signals, conditioned on the true type,
is as follows: f (h|H ) = .85, f (l|H ) = 0.15, f (h|L) = 0.45, f (l|L) = 0.55. Thus,
Pr(h) = 0.5 ∗ 0.85 + 0.5 ∗ 0.45 = 0.65.

In the mechanism we propose, the center asks each rater to announce her
signal. After all signals are announced to the center, they are revealed to the other
raters and the center computes transfers. We refer to this as the simultaneous
reporting game. Let xi ∈ S denote one such announcement, and x = (x1, . . . , xI )
denote a vector of announcements, one by each rater. Let xi

m ∈ S denote rater i’s
announcement when her signal is sm, and x̄i = (xi

1, . . . , x
i
M ) ∈ SM denote rater

i’s announcement strategy. Let x̄ = (x̄1, . . . , x̄I ) denote a vector of announcement
strategies. As is customary, let the superscript “−i” denote a vector without rater i’s
component.

Let τi(x) denote the transfer paid to rater i when the raters make announcements
x, and let τ (x) = (τ1(x), . . . , τI (x)) be the vector of transfers made to all agents. An
announcement strategy x̄i is a best response to x̄−i for player i if for each m:

∀x̂i ∈ S ES−i

[
τi

(
x̄i

m, x̄−i
) |Si = sm

] ≥ ES−i

[
τi(x̂

i , x̄−i)|Si = sm

]
. (27.1)
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That is, a strategy is a best response if, conditional on receiving signal sm, the an-
nouncement specified by the strategy maximizes that rater’s expected transfer, where
the expectation is taken with respect to the distribution of all other raters’ signals con-
ditional on Si = sm. Given transfer scheme τ (x), a vector of announcement strategies
x̄ is a Nash Equilibrium of the reporting game if (27.1) holds for i = 1, . . . , I , and a
strict Nash Equilibrium if the inequality in (27.1) is strict for all i = 1,. . . , I .

Truthful revelation is a Nash Equilibrium of the reporting game if (27.1) holds for
all i when xi

m = sm for all i and all m, Furthermore, truthful revelation is a strict Nash
Equilibrium if the inequality is strict. (In other words, if all the other players announce
truthfully, truthful announcement is a strict best response.)

Continuing the two-type, two-signal example, suppose that rater i receives the signal
l. Recall that Pr0(H ) = 0.5, f (h|H ) = 0.85, and f (h|L) = 0.45, so that Pr(si

l ) = 0.35.
Given i’s signal, the probability that rater j will receive a signal h is

Pr(Sj = h|Si = l) = f (h|H )
f (l|H ) Pr0(H )

Pr(Si = l)
+ f (h|L)

f (l|L) Pr0(L)

Pr(Si = l)

= 0.85
0.15 ∗ 0.5

0.35
+ 0.45

0.55 ∗ 0.5

0.35
∼= 0.54.

If i had instead observed h, then:

Pr(Sj = h|Si = h) = f (h|H )
f (h|H ) Pr0(H )

Pr(Si = h)
+ f (h|L)

f (h|L) Pr0(L)

Pr(Si = h)

= 0.85
0.85 ∗ 0.5

0.65
+ 0.45

0.45 ∗ 0.5

0.65
∼= 0.71.

27.4.2 Peer-Prediction Scoring

We now describe how to assign points to a rater i, based on her report and that of another
player j . A scoring rule is a function T (s|xi) that, for each possible announcement xi

of Si , assigns a score to each possible value s ∈ S. We cannot directly access the signal
sj , but in a truthful equilibrium, we can use player j ’s report.

Definition 27.1 A scoring rule is strictly proper if the rater maximizes her
expected score by announcing her true beliefs.

The literature contains a number of strictly proper scoring rules for eliciting beliefs
about the probability of an event. The score can be positive or negative. For example, one
proper scoring rule, the logarithmic scoring rule, is to penalize the player the log of the
probability she assigned to the event that actually occurred. Suppose that there are only
two possible events (h,l), and a player is asked to report her belief p̂ of the probability
of event h. The log scoring rule is defined by T (h|p̂) = ln(p̂), T (l|p̂) = ln(1 − p̂).
If her true belief is that h occurs with probability p, then the expected value of
announcement p̂ is p ln p̂ + (1 − p) ln(1 − p̂). Setting the first derivative to 0 gives
the first-order condition for maximization, which requires p = p̂.

In the peer prediction method, for each player we choose a reference rater r(i). The
outcome to be predicted is the reference rater’s announcement xr(i). Player i does not
directly report a probability distribution over the reference rater’s report: it is inferred
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from her own report and the prior probability distribution. Truthful reporting is still a
best response if she believes that the reference rater will report honestly.

We write T (xr(i)|xi) for ln[Pr0(Sr(i) = xr(i)|Si = xi)], i.e., the log of the inferred
probability that r(i) will see xr(i) given that Si sees signal xi . Then, let

τ ∗
i

(
xi, xr(i)

) = T
(
xr(i)|xi

)
. (27.2)

Proposition 1 For any mapping r that that assigns to each rater i a reference rater
r (i) 	= i, truthful reporting is a strict Nash equilibrium of the simultaneous reporting
game with transfers τ ∗

i .

proof Assume that rater r (i) reports honestly: xr(i) (sm) = sm for all m. Since
Si is stochastically informative for Sr(i), and r(i) reports honestly, Si is stochas-
tically informative for r (i)’s report as well. For any Si = s∗, player i chooses
xi ∈ S to maximize

M∑

n=1

T
(
sr(i)
n |xi

)
Pr

(
Sr(i) = sn|Si = s∗) . (27.3)

Since T (·|·) is a strictly proper scoring rule, (27.3) is uniquely maximized by
announcing xi = s∗. Thus, given that rater r(i) is truthful, rater i’s best response
is to be truthful as well.

Since 0 < Pr(Sr(i) = sn|Si = s∗) < 1, ln(Pr(Sr(i) = sn|Si = s∗)) < 0; we refer to τ ∗
i as

rater i’s penalty since it is always negative in this case. (By adding a suitably large
constant that depends only on the distribution f , it is in principle possible to convert
this to a positive score without altering its strategic properties.)

Consider the simple example where rater i received the relatively unlikely signal
l (Pr(Si = l) = 0.35). Even contingent on observing l it is unlikely that rater j will
also receive an l signal (Pr(Sj = l|Si = l) = 1 − 0.54 = 0.46). Thus, if rater i were
rewarded merely for matching her report to that of rater j , she would prefer to report
h. With the log scoring rule, an honest report of l leads to an expected payoff

ln[Pr(Sj =h|Si = l)] Pr(Sj =h|Si = l) + ln[Pr(Sj = l|Si = l)] Pr(Sj = l|Si = l)

= ln(0.54)0.54 + ln(0.46)0.46 = −0.69.

If, instead, she reports h, rater i’s expected score is

ln[Pr(Sj =h|Si =h)] Pr(Sj =h|Si = l) + ln[Pr(Sj = l|Si =h)] Pr(Sj = l|Si = l)

= ln(0.71)0.54 + ln(0.29)0.46 = −0.75.

As claimed, the expected score is maximized by honest reporting.
The key idea is that the scoring function is based on the updated beliefs about the

reference rater’s signal, given the rater’s report, not simply matching a rater’s report to
the reference report. The updating takes into account both the priors and the reported
signal, and thus reflects the initial rater’s priors. Thus, she has no reason to shade her
report toward the signal expected from the priors. Note also that she need not perform
any complex Bayesian updating. She merely reports her signal. As long as she trusts the
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center to correctly perform the updating and believes other raters will report honestly,
she can be confident that honest reporting is her best action.

Note that while Proposition 1 establishes that there is a truthful equilibrium, it is
not unique, and there may be nontruthful equilibria. To illustrate, in the example we
have been considering two other equilibria are (1) report h all the time, and (2) report
l all the time.2 While such nontruthful equilibria exist, it is reasonable to think that
the truthful equilibrium will be a focal point, especially when communication among
raters is limited, or when some raters are known to have a strong ethical preference
for honesty. In addition, the center can punish all the raters if it detects a completely
uninformative equilibrium such as all h or all l.

A variety of extensions to this base scoring rule have been studied. For example,
adding a constant value to the score increases the expected payoff without changing
the incentives for honest revelation. Multiplying the score by a constant preserves the
incentive for honest revelation but changes the amount of costly effort a rater will want
to exert in order to acquire an informative signal. The points that each person earns can
be debited from some other participant, so that all scores are settled through transfer
payments rather than subsidies from the center. Alternative proper scoring rules to
reduce the expected size of payments have also been studied.

The payments can be adapted to a sequential interaction scenario where each rater
sees the previous rater’s reports before reporting herself. Each rater is scored on the
basis of the probability distribution inferred from the common prior beliefs, her own
report, and previous reports. Since the center will take into account others’ reports
automatically, it is optimal to report just her own signal.

The most problematic aspect of the scoring mechanism is its reliance on common
prior beliefs about the distribution of types and the distribution of signals contingent
on types. These are needed to infer from a user’s reported signal xi the probability
distribution R for the reference rater’s signal, which is used to determine the user’s
point score. A seemingly attractive alternative is to elicit R directly, but player i may
also be a reference rater for some other player, and so xi must be truthfully elicited to
score that other player.

The requirement of common priors can be relaxed somewhat if each player is asked
to report her personal priors about the item’s type before receiving her information
signal about the item, and then to report her signal once she receives it. There still is a
requirement of common beliefs about the distribution of signals contingent on types,
in order to perform Bayesian updating correctly. One solution would be to define the
types empirically according to the distribution of signals they elicit (e.g., type 1 yields
10% h signals; type 2 yields 20%, etc.) Then, the beliefs about distribution of signals
contingent on type would, by construction, be commonly held.

Many open questions remain about the peer-prediction method. Can it be extended
to situations in which raters vary in their abilities and scores are used both to assess the
credibility of raters and to give them incentives for effort and honest reporting? Can the
method be extended to situations in which entities choose their interactions partners

2 To verify the “always play h equilibrium,” note that if the reference rater always reports high, the rater expects
ln(0.54)1 + ln(0.46)0 = −0.616 19 if she reports l, and ln(0.71)1 + ln(0.29)0 = −0.342 49 if she reports h.
Similar reasoning verifies the “always play l equilibrium.”
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rather than being randomly matched? Can it be made robust to collusion among entities
or sybil attacks with fake entities providing confirmatory ratings?

27.5 Reputations Based on Transitive Trust

In this section, we discuss the transitive trust approach to dealing with the lack of
objective feedback. The foundation of this approach is the postulate that the credibility
of an agent’s feedback is tied to the credibility of her non-feedback actions. This
assumption enables the construction of reputation systems in the absence of any external
signals of interaction outcomes or feedback quality: an entity’s reputation is calculated
by weighting ratings of the entity according to the raters’ credibilities, which are in
turn calculated from those raters’ reputations. Thus, if we begin with some set of
credible agents, we can potentially grow this set transitively: If the currently credible
agents have positive feedback about i, i can be included in the set of credible agents.
This is a recursive construction; we need to carefully define how to bootstrap the
credibility calculation, how to propagate the credibility through the network, and when
to terminate the calculation.

One additional simplification is often employed in reputation algorithms, which is
to ignore the temporal order in which feedback is received. Now, the feedback can be
succinctly expressed in graphical form: At a given point of time, let t(ij ) denote the
summary feedback (trust) that i reports about j , based on interactions between them
thus far. We assume that the trust can be expressed as a nonnegative real value. Then, the
input to the reputation system can be viewed as a “trust graph” G = (V, E, t), where
V is the set of agents, E the set of directed edges, and t : E → �+ \ {0} the weights.
(Note that typically the graph will be quite sparse, so for algorithmic considerations
we explicitly include E.)

We assume that the reputations computed by our system are numeric values. Then,
the reputation aggregation mechanism can be represented as a function from a trust
graph to a set of reputation values, F : G → �|V |, where Fv(G) is the reputation value
of vertex v ∈ V . The reputation values determine an ordering or ranking of the nodes.
A reputation function is trivial if the ranking induced by F (G) is constant over all G;
we restrict our attention to nontrivial reputation functions.

This model captures the many reputation systems that have been proposed or used
in practice. One important example is PageRank, a mechanism used by Google to rank
Web pages. In this case v ∈ V is a Web page, (v, w) ∈ E is a directed edge showing
that Web page v has a hyperlink to page w and t(v, w) = 1/Out(v), where Out(v) is
the outdegree of v. In a peer-to-peer system, v ∈ V is a peer, (v, w) ∈ E is a directed
edge showing that peer v has interacted with w and t(v, w) represents the degree of
trust that v has in w, which can depend on the number, type, and outcomes of v’s
interactions with w.

There are numerous ways in which the reputations can be computed from the trust
graph. We consider a simple version of PageRank, in which the ranking function is
given by

Fv(G) = ε + (1 − ε)
∑

v′|(v′,v)∈E

Fv′(G)t(v′, v).
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Another interesting aggregation function, used in the Advogato system, is the max-flow
algorithm, where Fv(G) is the maximum flow from some start node v0 ∈ V to v. In
the P2P setting it is natural to create personalized reputation functions where each
node uses itself as the start node. In the web ranking setting one can simply choose
one (or several) “trusted” nodes as the start nodes. Lastly, for comparison, we consider
the Pathrank algorithm where Fv(G) is the shortest path from some start node v0 ∈ V

to v, where the length of an edge is simply the inverse of the trust value.
A reputation system is monotonic if adding an incoming edge to v never reduces

the rank of v relative to any other node w, i.e., for E′ = E ∪ {uv}, Fv(V, E) > Fw(V,

E) ⇒ Fv(V, E′) > Fw(V, E′) and Fv(V, E) ≥ Fw(V, E) ⇒ Fv(V, E′) ≥ Fw(V, E′).
All the reputation schemes described above are monotonic. A reputation system is
symmetric if the function F commutes with permutation of the node names, i.e., the
reputations depend only on the graph structure, and not on the labels of the nodes.
The simple variant of PageRank described above is symmetric, but the other reputation
functions are not: the start node v0 enjoys a privileged position.

27.5.1 Incentives for Honest Reporting

With the transitive trust model, the incentive problems are particularly acute. Entities
are not rewarded or penalized directly for the quality of the ratings they provide, only
for the ratings they receive from others. Thus, an entity has no incentive to provide
informative feedback. Furthermore, depending on the reputation function F , she may
have a strong incentive to provide incorrect feedback, so as to influence the credibility
of other agents’ feedback about herself.

Therefore, we would like a reputation function F in which an agent v cannot
strategically choose feedback to boost her own standing. Define a reputation system as
rank-strategyproof if, for every graph G and every agent v ∈ V , agent v cannot boost
her rank ordering by strategic choices of how she rates other agents. This formulation
allows an agent to manipulate its own or others’ reputation scores as long as it is unable
to improve its position in the rank ordering of reputation scores.

It turns out that rank-strategyproofness is very difficult to achieve in symmetric
reputation systems: Any nontrivial, monotonic reputation system that is symmetric
cannot be rank-strategyproof. For example, in the PageRank ranking system, a node v

may be able to improve her rank by dropping an outgoing edge vu to a higher-ranked
node u, thereby reducing u’s reputation. We refer readers to the references at the end
of this chapter for additional results in this vein. We note that this impossibility result
does not apply to nonsymmetric reputation systems; the Pathrank function satisfies
both the rank-strategyproofness and monotonicity properties.

27.5.2 Sybils and Sybilproofness

Next, we consider robustness to another attack on reputation systems: sybil attacks. In
a sybil attack, a single agent creates many fake online identities to boost the reputation
of its primary online identity. Formally, we assume that a node can create any number
of sybil nodes, with any set of trust values between them. In addition, we allow the
node to divide incoming trust edges among the sybils in any way that preserves the
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total trust,
∑

v′|(v′,v)∈V t(v′, v), and manipulate the outgoing trust links in any manner
it chooses. Note that many other formulations are possible depending on the specific
system being modeled. Most of the results we discuss below hold in many of the other
possible formulations.

Definition 27.2 Given a graph G = (V, E, t) and a user v ∈ V , we say that a
graph G′ = (V ′, E′, t ′) along with a subset U ′ ⊆ V ′ is a sybil strategy for user v

in the network G = (V, E, t) if v ∈ U ′ and collapsing U ′ into a single node with
label v in G′ yields G. We can refer to U ′ as the sybils of v, and denote a sybil
strategy by (G′, U ′).

We define two different notions of sybilproofness for reputation functions.

Definition 27.3 A reputation function F is value-sybilproof if for all graphs
G = (V, E), and all users v ∈ V , there is no sybil strategy for v, (G′, U ′), with
G′ = (V ′, E′) such that for some u ∈ U ′, Fu(G′) > Fv(G).

Definition 27.4 A reputation function F is rank-sybilproof if for all graphs
G = (V, E), and all users v ∈ V , there is no Sybil strategy (G′, U ′) for v (with
G′ = (V ′, E′)) such that, for some u ∈ U ′ and w ∈ V \ {v}, Fu(G′) ≥ Fw(G′)
while Fv(G) < Fw(G).

Theorem 27.5 There is no (nontrivial) symmetric rank-sybilproof reputation
function.

proof Given a graph G = (V, E) and reputation function F , let v, w ∈ V with
Fw(G) > Fv(G). Now consider the graph G′, which is simply 2 disjoint copies
of G, where U is the second copy of G combined with v. By symmetry, there is
a node u ∈ U such that Fu(G′) = Fw(G′). Thus F is not rank-sybilproof.

Note that this result does not require the assumption that F is monotonic. In fact,
symmetric reputation functions cannot be sybilproof even for an attack with a single
sybil.

Definition 27.6 We say that a reputation function is K-rank-sybilproof if it is
rank-sybilproof for all possible sybil strategies (G′, U ′), with |U ′| ≤ K + 1.

Theorem 27.7 There is no symmetric K-rank-sybilproof nontrivial reputation
function for K > 0.

proof Consider the graphs in the previous example, where V = {v =
v1, v2, . . . , vr = w} is the original vertex set and U = {u1, u2, . . . , ur} is
the duplicate; let V ′ = V ∪ U . Define Gt to be the subgraph of G′ with
V t = V ∪ {u1, . . . , ut} and G0 = G. Then Fw(G0) > Fv(G0), while Fur

(Gr ) =
Fw(Gr ) (where ur is the copy of node vr = w), so there must exist a
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t such that maxi∈{v,u1,...,ut } Fi(Gt ) < Fw(Gt ), but maxi∈{v,u1,...,ut+1} Fi(Gt+1) ≥
Fw(Gt+1). Let m be the node in {v, u1, . . . , ut} that achieves the greatest rep-
utation in Gt+1. Then either Fm(Gt+1) ≥ Fw(Gt+1) or Fut+1 (Gt+1) ≥ Fw(Gt+1).
It follows that the addition of node ut+1 is a successful sybil strategy for m in Gt .
Hence, F is not 1-rank-sybilproof on all graphs.

Now, consider PageRank. It is clearly symmetric—changing the labels on the nodes
does not change the reputation values. This immediately implies that it is not rank-
sybilproof.

One natural approach to overcoming this result is to break the symmetry of the
reputation system by using a specific trusted node (or nodes) as a seed. However, care
is still needed to achieve robustness against sybil attacks. Here, we consider two simple
reputation functions that are provably sybil-resistant.

We first consider the max-flow based ranking mechanism. It is easy to show that it
is value-sybilproof.

Theorem 27.8 The max-flow based ranking mechanism is value-sybilproof.

proof This follows directly from max-flow equals min-cut after noticing that
all sybils of v ∈ V must be on the same side of the cut as v and thus on the other
side of the cut from the source s. Thus, no sybil can have a value higher than the
min-cut which is equal to Fv(G).

However, the max-flow based ranking mechanism is not rank-sybilproof, as the ex-
ample in Figure 27.2 shows. This is because while v ∈ V cannot increase its own value,
it can reduce the value of nodes for which it is on a max-flow path. Nonetheless, there
do exist nontrivial rank-sybilproof algorithms. The Pathrank reputation mechanism is
one example:

Theorem 27.9 The Pathrank ranking mechanism is value-sybilproof and rank-
sybilproof.

proof It is value sybilproof since sybils cannot decrease the length of the
shortest path. Rank-sybilproofness follows from the fact that the only time a node
v can affect the value of another node w is if v is on the shortest path from s to
w; however, in that case, we must have Fv(G) > Fw(G).

The basic property that flow-based mechanisms are value sybilproof but not rank-
sybilproof can be generalized to include a wide variety generalized flow mechanisms,

a

b
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Figure 27.2. Node (a) improves its ranking by adding a sybil (a′) under max-flow.
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such as those with “leaky pipes.” Similarly, it can be shown that generalized path-
based methods are value and rank-sybilproof and only path-based methods are rank-
sybilproof in a large class of reputation mechanisms.

Lastly, we note that there are many open questions in this area. For example, while
both PageRank and max-flow mechanisms are not rank sybilproof in the worst case,
they are very useful reputation systems, and might be less manipulable on average. A
precise formulation and analysis of this question is still open. For example, about half
the pages on the Web could double their PageRank using only a single sybil.

27.6 Conclusion and Extensions

Reputations provide one of the most successful incentive mechanisms, and reputation
systems are widespread on the Internet today. However, many reputation systems find
themselves constantly under attack, and have to resort to fixing strategic problems after
they are detected. In particular, many reputation systems are engaged in a constant
arms race against attackers, where the systems change their ranking procedure and the
attackers experiment until they find a weakness.

We believe that theoretical results on what can and cannot be accomplished by
reputation systems, as well as provably secure system designs, would very useful. In
this chapter, we have described three components of this theory; several other directions
have been explored, and much research remains to be done.

27.6.1 Extensions and Open Problems

Distributed reputation systems. Up to this point, we have considered that users may
strategically manipulate the feedback they provide or the identities they use, but we
have implicitly assumed that they cannot directly manipulate the way in which the
feedback is aggregated or the content of other users’ feedback. This is a reasonable
assumption as long as the users do not have any control over the communication
medium or the server(s) used to compute the reputations. However, many proposed
applications of reputation systems are settings, such as peer-to-peer applications or
wireless ad hoc networks, in which these assumptions might be violated: there is no
neutral trusted party to compute reputations, and users might be able to intercept each
other’s messages.

This has led many researchers to study distributed reputation systems in which
the reputations are computed by the users themselves, but measures are adopted to
minimize the risk of manipulation. One fundamental technique is to use replication:
The same computation is performed at multiple nodes, and there are protocols to
detect inconsistencies in the results. Similarly, if the users control portions of the
communication network, it may be possible to send messages along multiple redundant
paths so that no user can block or modify communication between two other users.

Much work remains to be done in this area. In particular, the redundancy technique
is vulnerable to collusive attacks; the main design approach is to make these attacks
difficult by requiring that a large number of users collude. This may be compromised
by the existence of pseudonyms and sybil attacks.
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Dynamic attacks. The basic model we have studied assumes that a user has full
knowledge of which online identity she is interacting with. In some applications, it
may be possible for users to claim credit for an interaction that another user executed,
or to freeride by copying another user’s actions. For example, if the contribution being
measured is the number of puzzles a user solves, or the quality of ratings she gives to
online articles, she may be able to garner a high reputation simply by copying another
user.

On the other hand, dynamics may restrict the range of attacks in some settings.
For example, in a P2P system a peer cannot divide incoming links among its sybils
arbitrarily, since one needs an interaction to obtain a link and a low ranked sybil might
have difficulty finding (nonsybil) partners.

Metrics and benchmarks. Strategic analysis of reputation systems often takes the
form of proving robustness against attacks. While robustness against attacks is certainly
desirable, we should not lose sight of the performance of the reputation system. In the
extreme, a system in which everybody has zero reputation would be perfectly secure
but completely useless. We need to develop metrics (or empirical benchmarks) of how
well a particular aggregation method serves the users’ information needs. One approach
which has been taken is to formulate the performance in terms of an economic welfare
measure, but a more direct formulation may be valuable.

Drawing on other social sciences. We have concentrated on economic and game
theoretic approaches to reputation. Reputation has also been studied in sociology and
social psychology, especially in the form of the broader, but clearly related, notion of
trust. Insights from this literature are valuable in the design of reputation systems.

Putting it all together. The major challenge in reputation systems is to design a system
that coherently puts together all the ideas that have been explored, including accurate
feedback elicitation, robustness to whitewashing and sybil attacks, and distributed
computation. This remains the key challenge for the reader!

27.7 Bibliographic notes

Below we provide pointers to relevant literature. Our list is meant to provide access
to the literature and is certainly not comprehensive, i.e., for each topic we give one or
two representative publications from which the reader can iterate the reference finding
process.

Several chapters in this book extend our discussion, both providing a more detailed
introduction to game theory, and discussing some examples on reputation systems.
In particular, Chapter 23 on incentives in peer-to-peer systems includes a detailed
discussion on the use of reputation systems in peer-to-peer environments.

There is a large literature on economic models of reputation. The following
classic articles provide some foundations: Kreps and Wilson (1982), Milgrom and
Roberts (1982), Fudenberg and Levine (1989), and Kandori (1992). Tadelis (1999) con-
siders trading reputations, and shows that it is not always undesirable. Dellarocas (2001)
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analyzes the economic efficiency of different feedback aggregation mechanisms. For
broad overviews of this area, see Dellarocas (2003) and Resnick et al. (2000).

Our presentation of whitewashing follows Friedman and Resnick (2001). That paper
includes a detailed proof that no equilibrium can yield substantially more cooperation
than the Paying Your Dues equilibrium. Also see Lai et al. (2003), which introduced
the term whitewashing.

Recently, the robustness of reputation systems to manipulation has attracted consid-
erable research. The peer-prediction method to elicit honest feedback was originally de-
scribed in an article by Miller et al. (2005). See Cooke (1991, p. 139) and Selten (1998)
for a discussion of strictly proper scoring rules. Jurca and Faltings (2006) study mod-
ifications to the scoring rule to reduce the total expected payment. Bhattacharjee and
Goel (2006) treat the revenues generated by a set of ratings as an objective indica-
tor of the quality of the ratings. They provide an algorithm for dividing the revenues
among raters in a way that creates incentives for entities to correct errors in the current
community rating consensus.

Maintaining reputations for raters can provide signals about rater quality, in addi-
tion to incentives for good performance. Awerbuch and Kleinberg (2005) describe an
algorithm that agents can use to learn who the good raters are. Their solution is robust
to malicious as well as strategic attackers, provided that there are some altruistic raters
who will rate accurately without incentives.

Many researchers have presented transitive-trust approaches to calculating reputa-
tions; a general framework using path algebras is described by Richardson et al. (2003).
Altman and Tenneholtz (2006) study reputation systems from an axiomatic point of
view, and present many possibility and impossibility results of the same flavor found in
Section 27.5.1. Chien et al. (2003) prove that PageRank is monotonic. Our presentation
of the sybilproofness of reputation systems follows Cheng and Friedman (2005). Many
proposed solutions to the sybil attack implicitly or explicitly use the idea of a seed to
break the symmetry of the reputations; for example, see Gyöngyi et al. (2004). The
Advogato metric proposed by Levien (2004) also falls in this category. An alternative
approach is described by Goel et al. (Zhang et al., 2004; Bhattacharjee and Goel, 2005).
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Exercises

For context, each problem is preceded by the number of the relevant section.

27.1 (27.2) Verify that if the stage game payoff is constant, the (discounted) average
payoff per round equals that constant. That is, if pi t

i = c then πi = c.

27.2 (27.2) The well-known “tit-for-tat” (TFT) strategy can be defined as: in round i play
the strategy that your opponent played in round i − 1, starting with C . Show that
TFT, played by all players, is not an SPNE for any δ < 1.

27.3 (27.2) Recall our definition of the Grim strategy: play C unless some player has
played D in a previous round. Explain why it should not be defined in the apparently
equivalent manner: “Play C unless the other player has played D in a previous
round.” (Hint: SPNE strategies need to optimal even on play paths that should not
arise!)
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27.4 (27.3) Verify that PYD is indeed an SPNE. In particular, show that deviating from
the PYD strategy by playing D instead of C is not profitable when δ > 1/2. (Hint:
Argue that, no matter the reputation of the deviator’s partner in the next round, she
could get a payoff 2 higher if her own reputation is good than if it is bad.)

27.5 (27.3) Compute the equilibrium conditions for personalized-grim. (Hint: Consider
each personalized game as a separate game where players only play in some
randomly chosen periods.)

27.6 (27.4) Suppose that a rater i can see the ratings of a rater j ( j 	= r (i )) before
she submits her rating. Suppose that i was paid off according to the scoring rule
T (xr (i )|xi ) defined in equation 27.2. Construct an example in which honest rating
is not always optimal for i .

27.7 (27.4) Consider a situation with two events h and l , in which a player is asked
to report her belief p̂ about the probability of h. The quadratic scoring rule is
defined by T (h| p̂) = a + 2bp̂ − b[ p̂2 + (1 − p̂)2], T (l | p̂) = a + 2b(1 − p̂) − b[ p̂2 +
(1 − p̂)2], where a and b are constant parameters. Show that the quadratic scoring
rule is a proper scoring rule. Derive upper and lower bounds on the player’s score
(in terms of the parameters).

27.8 (27.5) Modify the assumptions in the sybilproofness argument for a specific setting
and check which of the results are changed. (For example, assume that incoming
trust edges cannot be moved, as would be the case for Web page ranking.)

27.9 (27.5) Compute the probability that a sybil changes the rank ordering of two nodes
for a randomly generated trust graph for the ranking procedures discussed. (Choose
any random model you like and either try to prove a general result or explicitly
compute for a small, 3–5 node, graph.)


